17 research outputs found

    Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives

    Get PDF
    The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions-using mainly water as a solvent and often resulting in minimal byproduct formation-enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a "green'' chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed

    Electrochemistry and kinetics of fungal laccase mediators

    No full text
    The screening of potential redox mediators for laccase was performed using homogeneous Trametes hirsuta laccase. Heterogeneous (electrochemical) and homogeneous (oxidation by laccase) reactions of the different types of the enhancers (mediators) of the enzyme were investigated. It was discovered that derivatives of phenyl-methyl-pyrazolones and benzoic acid, as well as N-hydroxynaphthalimide were efficient substrates for the laccase. The characterization of several representatives from each class was carried out using electrochemical and enzyme kinetics methods. The kinetic parameters for the oxidation of phenyl-methyl-pyrazolones and 3-(6-hylroxy)-aminobenzoic acid were comparable to those for 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) oxidation by the laccase, whereas the rate of enzymatic oxidation of N-hydroxynaphthalimide was sufficiently lower. Electrochemical experiments demonstrated that only oxidation of phenyl-methyl-pyrazolones and N-hydroxynaphthalimide yielded several high-potential intermediates capable of oxidizing veratryl alcohol, which was used as a lignin model substrate, whereas derivatives of benzoic acid showed low-potential intermediate, which was not able to oxidized lignin model compound. Phenyl-methyl-pyrazolones was about 50% as effective in degrading veratryl alcohol compared to ABTS as judged from HPLC kinetic studies, whereas N-hydroxynaphthalimide showed the same efficiency as ABTS. Phenyl-methyl-pyrazolones and hydroxynaphthalimides may be of commercial interest for oxidoreductase-catalyzed biodegradation of different xenobiotics. (c) 2005 Elsevier B.V. All rights reserved
    corecore